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Optical spectroscopy is a powerful technique for studying kinetic and dynamic processes in solids. In 
the present contribution, in particular two properties of optical spectroscopy will be exploited:  

(i) ligand field spectra of transition metal cations often can provide unique insights into the 
charge state of the ion under consideration as well as into their actual local coordination and 
the symmetry of their lattice site. 

(ii) optical absorption induced by hopping processes of small polarons reveals information on 
the dynamics of these processes and allows for the determination of associated small-
polaron hopping energies.  

Experimentally, the study of kinetic and dynamic processes in solids as a rule requires measurements 
to be performed at elevated temperatures under in-situ conditions and, e.g., at defined oxygen partial 
pressures. Fig. 1 shows an experimental set-up used in some of the experiments reported below. 
 

 
 

Fig. 1  Sketch of the experimental setup for optical spectroscopy at elevated temperatures. 
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The kinetics of cation distributions in olivines has been one of the research fields of the last few years 
[1-4] of the Braunschweig Solid State Chemistry Group. Figure 2 shows how the optical absorbance 
A = ε ∙ c ∙ d due to Co2+ ions on M2 sites in (Co0.21Mg0.79)2SiO4 olivine changes with time upon tempera-
ture jumps between 873 and 948 K. The time evolution of absorbance – after the sudden initial 
changes due to the temperature dependent absorption coefficient ε – reflects the reequilibration of the 
cation distribution after the external perturbation. From the systematic studies performed, it has been 
found that the activation energy for cation redistribution is composition dependent and of the order of 
200 kJ/mol. From the oxygen activity dependence of the kinetics it has been concluded that the cation 
site exchange processes are due to a local defect mechanism involving cation vacancies.  

 
Fig. 2  Temperature-jump optical relaxation experiments on M2 sites in (Co0.21Mg0.79)2SiO4 together with fits for temperature 
jumps between 873 K and 948 K. Relaxation times for the cation site-change reaction at 873 K and 948 K are 176 s and 19 s, 
respectively. Experiments performed in air.  

 
Fig. 3  Optical absorption spectrum of single crystalline blue BaTiO3 at 298 K fitted by three Gaussian peaks 
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Small-polaron hopping processes in BaTiO3 give rise to optical absorption in the NIR region [5,6] and 
a close relationship has been shown to exist between the optical excitation energy Eopt and the asso-
ciated hopping energy Em of the small polarons: Eopt ≈ 4 Em. As an example, Fig. 3 displays the spec-
trum of strongly reduced (blue) single crystalline BaTiO3. The absorption around 6000 cm−1 (0.74 eV) 
has been associated with small-polaron hopping. Indeed, the magnitude of the hopping energy of about 
0.18 eV has been confirmed by electrical conductivity and also absolute values of the optically deter-
mined conductivity agree well with the directly determined data.  
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